
DYNAMIC USER INTERFACES
for Desktop and Mobile

Core Developer

Iliyan Peychev

Agenda

� Responsive design using JavaScript - AlloyUI Viewport

� Responsive design using CSS - Media Queries

Dynamically retrieving data - Pjax and A.Plugin.ScrollInfo� Dynamically retrieving data - Pjax and A.Plugin.ScrollInfo

� The future - CSS Flexible Box Layout Module

Responsive design using JavaScript

AlloyUI Viewport allows you to adapt your layout based on
the following size groups:

� 320px - smart phones in portrait mode

� 480px - smart phones in landscape mode� 480px - smart phones in landscape mode

� 720px - for tablets in portrait mode

� 960px - for Desktop browsers

Overwriting the magic numbers

These are in "defaults.viewport" namespace so you can
overwrite them.

var viewport = YUI.AUI.namespace ('defaults.viewport ');

JavaScript

var viewport = YUI.AUI.namespace ('defaults.viewport ');

viewport.columns = {
...

};

Supports greater than or less than the
specified widths.

� It is also possible to target widths, greater than or less
than the specified.

� If you have a device with 600x800px screen resolution,
you can still target that device with the CSS classes.you can still target that device with the CSS classes.

How to use it

Just add "aui-viewport" module to the list of modules on your
page:

AUI().use('aui -viewport', ...);

JavaScript

AUI().use('aui -viewport', ...);

How does it work

It adds a few classes to the HTML element depending on the
width of the window:

HTML

Based on these classes, you may create selectors which
match some devices only.

<html class="aui-view-gt320 aui-view-gt480 aui-view -gt720 aui-
view-gt960 aui-view-960">

AUI Viewport example

Order the navigation items in a row for tablets...

#navigation li {
display: inline;

CSS

display: inline;
float: left;

}

AUI Viewport example

...or in column mode for smart phones

.aui-view-lt720 #navigation li {
display: block;

CSS

display: block;
float: none;

}

Target specific browsers

/* Browsers on smartphones */
.touch.aui-view-lt720 {}

/* Webkit based tablets and smartphones */

CSS

/* Webkit based tablets and smartphones */
.webkit.aui-view-lt960 {}

/* Smaller browser views on just Windows */
.win.aui-view-720 {}

Pros and cons
Pros

� Simple and powerful

� Will work on browsers which don't support Media Queries

ConsCons

� Will not work if JavaScript is disabled

� JavaScript blocks rendering process

Supported browsers

6+

Responsive Design using Media Queries

Media Queries allow adapting the same content to a specific
range of output devices.

Responsive Design using Media Queries

Media Queries allow adapting the same content to a specific
range of output devices.

CSS3 Media Queries extend the media queries we had in
HTML4 [HTML401] and CSS2 [CSS21]:

Responsive Design using Media Queries

‘aural’, ‘braille’, ‘handheld’, ‘print’, ‘projection’, ‘screen’, ‘tty’,
‘tv’

Loading CSS file only if needed

<link media="(min-width: 40.5em)" href="extensions. css"
rel="stylesheet" />

HTML

<link media="not screen and (color)" href="example. css"
rel="stylesheet" />

HTML

Example

@media all and (orientation: portrait) {
….

CSS

Apply a style sheet only in portrait orientation:

….
}

Web developers traditionally assumed a CSS pixel as a
device pixel.

However, on high DPI devices (such as iPhone 4+) a CSS

A CSS pixel is not always a device pixel

However, on high DPI devices (such as iPhone 4+) a CSS
pixel may repsesent multiple pixels on screen.

If we set zoom magnifcation of 2x, then 1 CSS pixel would
actually be represented by a 2×2 square of device pixels.

Resolving the situation

@media
only screen and (-webkit-min-device-pixel-ratio: 2),
only screen and (min--moz-device-pixel-ratio: 2),
only screen and (-o-min-device-pixel-ratio: 2/1),
only screen and (min-device-pixel-ratio: 2),
only screen and (min-resolution: 192dpi),
only screen and (min -resolution: 2dppx) {

CSS

only screen and (min -resolution: 2dppx) {

/* Retina-specific stuff here */

}

Opera requires fractions for the device-pixel-ratio
Param. Firefox 16 supports "min-resolution"
using the dppx unit.

Credits to css-tricks.com

Supported browsers

9+

Retrieving data

Retrieving data

Pjax Utility

Progressively enhance normal links on a page.

Pjax Utility

Progressively enhance normal links on a page.

In this way clicks result in the linked content being loaded via
Ajax.

Pjax Utility

How to use it

AUI().use('pjax', function (A) {
new A.Pjax({container: '#content'});

JavaScript

Plug the module to the content:

new A.Pjax({container: '#content'});
});

By default Pjax module will handle links which have ".yui3-
pjax" class.

It is easy to customize this by overwriting "linkSelector"
attribute of Pjax module.

Make the links Pjax-able

� By default the Pjax instance listens to clicks on any link on
the page that has a “yui3-pjax” class.

� When a “yui3-pjax” link is clicked, its URL will be loaded
via Ajax and the loaded content will be inserted into the
“#content” div, replacing its existing contents.

How does it work

“#content” div, replacing its existing contents.

� When the Pjax Utility makes an Ajax request to the server,
it adds a special X-PJAX HTTP header to the request.

Useful when you want to:

� Implement infinite scrolling

A.Plugin.ScrollInfo

� Implement infinite scrolling

� Lazy-load content

� Display data in the same way as native applications do it

How to use it

var body = A.one('body');

body.plug(A.Plugin.ScrollInfo);

JavaScript

Plug the module to a node (may be the page body):

body.scrollInfo.on('scrollToBottom', function (even t) {
// Load more content when the user scrolls to the b ottom of the page.

});

Provides useful information
Fires multiple events depending on the direction user

scrolled the content:

� scrollToBottom – probably the most useful event

� scrollDown

� scrollLeft� scrollLeft

� scrollRight

� scrollToLeft

� scrollToRight

� scrollToTop

� scrollUp

The future

The future

CSS Flexible Box Layout Module

� CSS box model optimized for user interface design.

� Similar to block layout.

� Designed for laying out more complex applications and
webpages.

CSS Flexible Box Layout Module

webpages.

� Contents can be laid out in any flow direction.

� Display order can be reversed.

� Can “flex” contents sizes to respond to the available
space.

The “Holy Grail Layout”

<header>

<nav>

�Topic 1
Topic 2

<aside>

Speakers

<article>

Dynamic User Interfaces
�Topic 2
�Topic 3
�Topic 4
�Topic 5

<footer> Liferay Events

The “Holy Grail Layout” source code
<!DOCTYPE html>

<header>Example Header</header>

<div id="main">

<article>Dynamic User Interfaces</article>

HTML

<article>Dynamic User Interfaces</article>

<nav>Topics</nav>

<aside>Speakers</aside>

</div>

<footer>Liferay Symposium 2012</footer>

The “Holy Grail Layout”
<header>

<nav>

�Topic 1
�Topic 2
�Topic 3
�Topic 4
Topic 5

<aside>

Speakers

<article>

Dynamic User Interfaces

#main { display: flex; }
nav { order: 1; width: 200px; }
article { order: 2; flex: 1; }
aside { order: 3; width: 200px; }

CSS

�Topic 5

<footer> Liferay Events

What about mobile?

@media screen and (max-width: 600px) {
#main {

flex-direction: column;
}

CSS

Just restore document order and set the width to auto

article {
flex: none;

}

article, nav, aside {
order: 0;
width: auto;

}
}

The “Holy Grail Layout” mobile view
<header>

<article>

Dynamic User Interfaces

<nav> <nav>
Topic 1

<aside>

Speakers

<footer> Liferay Events

Creating a header

.header {
display: flex;

}

.header .login {

CSS

Use “margin-left: auto” to separate flex items in “groups”.

.header .login {
margin-left: auto;

}

Products Services Partners Sign In

The result:

� The contents of a flex container can be laid out in any
direction and in any order.

� This functionality is exposed through the 'flex-direction',
'flex-wrap', and 'order' properties.

Switching from row to column is easy

'flex-wrap', and 'order' properties.

� Keep in mind this affects only the visual rendering and it
will leave the speech order and navigation based on the
source order.

Center content vertically
.container {

align-items: center;
justify-content: center;
display: flex;

}

CSS

Item 3Item 2Item 1

Reverse the order (row-reverse)

.container {
flex-direction: row-reverse;
...

}

CSS

Item 3 Item 2 Item 1

Reverse the order (column-reverse)

.container {
flex-direction: column-reverse;
...

}

CSS

Item 3

Item 2

Item 1

Multi-line flex container

.container { display: flex; width: 400px; }
CSS

Breaks its flex items across multiple lines. The cross size of
each line is the minimum size necessary to contain the flex

items on the line.

.container { display: flex; width: 400px; }

.multi-line .item { width: 100px;}

Item 1 Item 2 Item 3

Item 4 Item 5

Multi-line auto flex container

.multi-line .item {
flex: auto; /* or flex: 1 1 auto; */
width: 100px;

CSS

Setting "flex: auto;" to the items will force them to absorb any
free space remaining.

width: 100px;
}

Item 1 Item 2 Item 3

Item 4 Item 5

Supported browsers

10+

Notes:

Firefox Nightly requires to turn on “layout.css.flexbox.enabled” in
about:config

IE10 and Safari implemented an earlier draft of the specification

Summary
Adapting the layout to the device the user is currently using:

� AlloyUI Viewport (JavaScript) and Media Queries (CSS)

Summary
Adapting the layout to the device the user is currently using:

� AlloyUI Viewport (JavaScript) and Media Queries (CSS)

Retrieving the data dynamically:Retrieving the data dynamically:

� Pjax Utility and ScrollInfo plugin

Summary
Adapting the layout to the device the user is currently using:

� AlloyUI Viewport (JavaScript) and Media Queries (CSS)

Retrieving the data dynamically:Retrieving the data dynamically:

� Pjax Utility and ScrollInfo plugin

Looking at the future:

� Keep CSS Flexible Layout in your radar and stay tuned :)

Twitter ipeychev

Google+ https://plus.google.com/101163834202763493709

Questions?

Google+ https://plus.google.com/101163834202763493709

email iliyan.peychev@liferay.com

