
How to Upgrade to Liferay
Digital Experience (DXP)
7.4 from Liferay 6.X

1

Table of Contents ��1

Introduction��2

Upgrade General Timeline ��2

Important Considerations: ��2

General Timelines: ��4

Architecture Review: 1–2 weeks ��������������������������������4

Scalability Review: 1–2 weeks ������������������������������������4

Liferay Upgrade: 1–4 months ��������������������������������������4

Testing: 1–2 weeks ��5

Performance Tuning: 1–2 weeks ��������������������������������5

Infrastructure Changes ��5

Compatibility Matrix ��5

Search ��6

JDK ��6

Deployment Plan ��6

Rolling Releases��7

Database Upgrade ��7

Before You Start ��7

Database Upgrade Tool ��8

Upgrade on Startup ��9

Troubleshooting ��9

Upgrade Report��9

Upgrading the Modules ��9

Upgrade Framework - New Features��������������������������� 11

Upgrading your Code ��� 12

Low-Code Applications ��� 12

Liferay Project SDK ��� 12

Liferay Workspace ��� 13

Blade CLI ��� 14

Breaking Changes ��� 14

Liferay Developer Studio �� 15

Code Upgrade Tool ��� 15

Upgrading from Plugins SDK

to Liferay Workspace ��� 15

Finding Breaking Changes ��� 16

Upgrading Customizations to

New Modular Structure ��� 16

Code Upgrade Scenarios ��� 17

Migrating a 6.2 WAR to a

Liferay DXP-supported WAR ��� 17

Converting a Portlet to an OSGi Module ������������������� 17

Upgrading Themes ��� 19

Additional Resources ��� 20

Summary ��� 20

Moving Forward ��� 20

Table of Contents

2

Introduction
As customer demand for always-on and everywhere digital experiences has risen,
so has the need for companies to equip themselves with the right technologies to
deliver great digital experiences and remain agile for future digital innovations.
Liferay Digital Experience Platform (DXP) enables digital businesses to manage
and deliver customer experiences that are consistent and connected across digital
touchpoints, including mobile, desktop, kiosk, smart devices, and more.

An upgrade to Liferay DXP is an investment in addressing immediate needs in digital
experience while laying the foundation to serve an increasingly connected digital
audience. The upgrade places your business in the best position to take advantage
of Liferay’s latest developments for digital businesses including in headless APIs,
asset auto-tagging, content recommendations, advanced segmentation and
personalization capabilities, and more.

This whitepaper aims to set a framework for Liferay’s recommended upgrade path
for your organization. A major technology upgrade is an endeavor requiring a deep
analysis of your business requirements, careful planning, testing, and execution in
order to be successful. Before you start on your planning and execution, Liferay’s
Global Services team, our group of professional consultants with extensive
experience in upgrading customers to the latest Liferay platform, can help you in
a critical analysis of your needs through the Liferay Upgrade Analysis Program.
Liferay’s Customer Success team also has an Upgrade Preparedness Program for
customers wanting to receive some initial information on what their upgrade may
entail. We recommend availing yourself of either or both of these comprehensive
analyses to gain awareness of the key considerations in an upgrade to Liferay
DXP, so that your company can enjoy a seamless transition and begin enjoying the
benefits of the latest Liferay Platform.

Upgrade General Timeline
Important Considerations:
Upgrades require data modifications, code modifications, and infrastructure
changes. The process will involve many important decisions to be made. Careful
thought should go into what’s wanted vs. what’s actually needed.

Sufficient time should be given to do performance testing to dig up any code
related conflicts or defects (this includes potential defects or bugs in Liferay DXP).
This should happen before any environment tuning is conducted.

https://www.liferay.com/documents/10182/1619373/Liferay+Upgrade+Analysis+Overview?utm_source=whitepaper&utm_medium=content&utm_content=upgrading%20from%20liferay%206.x%20to%20liferay%20dxp%20

33

Extra time should be taken into consideration for reviewing all the customization,
hooks, themes, tables, plugins, etc. The more complex the setup, the more
time should be planned to identify any possible issues. In Liferay DXP, all the
portal properties should be reviewed to determine the actual need/want of the
functionality. Customers should talk to Liferay Support to clarify any uncertainties
about what a portal property does.

Answering the following questions now can help you set a proper timeline and set
expectations to better manage the risks:

1. What version am I on?
If you are a few versions away from the current Liferay version, you should
remember that your data will need to go through the full upgrade path of previous
versions before you will eventually be upgraded to Liferay DXP. This means that
if you are on Liferay Portal 6.1, your data will first be upgraded to 6.2 before it is
upgraded to Liferay DXP. We recommend using the Upgrade tool to do so, as it can
handle the complexities involved. The only use case in which you should upgrade
manually is if you are upgrading a Portal version that is older than 6.1.

2. How much data do I have?
If your project has a large amount of data, it is essential to have a properly indexed
database. Also set aside more time if you have a larger database (3GB or more).

3. How much of my existing web content, templates
and structures will I need to upgrade?
Web content, templates and structures are all upgradeable into 7.x. However, if
you are on 6.1, you may have issues with the requirement to have unique elements
within a structure. More information on the issue can be found here.

4. How many portlets will I need to upgrade?
Not all portlets will need to be upgraded for Liferay DXP. A proper analysis will give
you a better estimate on the amount of time and development resources you will
need to devote to this process.

5. Am I overriding many JSPs?
JSPs have changed a lot since versions 6.1 and 6.2. We recommend moving away
from overriding JSPs completely, if possible. A number of JSPs have extensions you
can plug into without resorting to this.

6. Do I have an EXT to upgrade?
The good news is that with Liferay DXP, we’ve created many more extension points,
so the use of EXTs can be reduced. Evaluate if customizations can be done without
using an EXT.

7. Am I planning to convert to OSGi bundles?
It will take more time, but the investment may well be worth it. Not everything
needs to be converted to an OSGi bundle.

https://help.liferay.com/hc/en-us?utm_source=whitepaper&utm_medium=content&utm_content=upgrading%20from%20liferay%206.x%20to%20liferay%20dxp%20
https://help.liferay.com/hc/articles/360018120292-Structures-With-Duplicate-Element-Names-Fail-DDM-Verification-When-Upgrading?flash_digest=fdebdf6cebf5ab750859497ead56c828fd9789fe&utm_source=whitepaper&utm_medium=content&utm_content=upgrading%20from%20liferay%206.x%20to%20liferay%20dxp%20

4

General Timelines:
Architecture Review: 1–2 weeks
The internal architecture review for a project will vary but generally speaking, plan
for 1–2 weeks. Developers should be aware of the new modular architecture and
what that means but sometimes they do not see its implications at the time of
configuring their dependencies.

Scalability Review: 1–2 weeks
After the Architectural Review is complete, take 1–2 weeks to determine if the
current code design accounts for the necessary scalability for your use-case. This
should be done with your code review.

Liferay Upgrade: 1–4 months
This document will take you through the Liferay Upgrade. Here you will perform
the necessary changes to upgrade your data, customizations and environments
to Liferay DXP 7.4. The architecture and scalability review should ensure that you
make the best use of your upgrade time.

Sample Liferay DXP Upgrade Path

Phase 1 Phase 2 Phase 3 Phase 4

Infrastructure Migrate JDK Migrate App

Server

Migrate

Database

Create Search

Server

Data Backup

Database

Migrate App

Server

Migrate

Module Data

Create

Custom Data

Code Create

Workspace

Migrate

Plugins SDK

to Workspace

Migrate APIs/

Rebuild

Services

Migrate

Portlets

Convert to

Modules

https://help.liferay.com/hc/articles/360018163851-Migrating-Data-Upgrade-Processes-to-the-New-Framework-for-Modules-?utm_source=whitepaper&utm_medium=content&utm_content=upgrading%20from%20liferay%206.x%20to%20liferay%20dxp%20

5

Code Create

Workspace

Migrate

Theme to

Workspace

Migrate

Theme

Migrate JS

Components

Migrate Web

Content

Testing: 1–2 weeks
This is the period of time where code should be fixed in order to get to the point to
do performance tuning and load testing. Please take a look at the suggested starting
points for minimal architecture and hardware platforms/requirements, as outlined
in our Liferay DXP Performance Whitepaper.

Performance Tuning: 1–2 weeks
This starts once any code-related bottlenecks are resolved and configuration
files need to be changed in order to determine the best values for performance.
Attempting to tune performance prior to code review can lead to bottlenecks
in the upgrade. During this time, we recommend going through the Liferay DXP
Deployment Checklist. In addition, all other systems (database, Apache HTTPd,
application server, Liferay DXP itself) will need to undergo a thorough review via
your internal team specialists. The average performance tuning takes 2–4 weeks
with an experienced QA team or DBA in particular. The timing can vary depending
on your team’s expertise.

Infrastructure Changes
Compatibility Matrix
Now that you’re ready to begin your upgrade, first start with making sure your
environment is up to date with the Liferay DXP 7.4 Compatibility Matrix. Many
environments have gone end-of-life since 6.2 was released. It is essential that
your system is running in a supported environment so you are able to receive
proper support.

https://www.liferay.com/resources/product-info/Liferay+DXP+Performance+Benchmark+Study+of+Liferay+DXP+7.4
https://www.liferay.com/documents/10182/3292406/Liferay+DXP+7.4+Deployment+Checklist.pdf/f3464a36-c0f0-6708-37dd-efe7b8270403?t=1643744619710
https://www.liferay.com/documents/10182/3292406/Liferay+DXP+7.4+Deployment+Checklist.pdf/f3464a36-c0f0-6708-37dd-efe7b8270403?t=1643744619710
https://www.liferay.com/documents/10182/246659966/Liferay+DXP+7.4+Compatibility+Matrix.pdf/52024b8e-20e8-ecf5-c911-0291ffda9dea?t=1635460593737

6

Search
The biggest change you will notice is that Liferay now requires the search engine to
run as a separate JVM, either on the same or on a dedicated physical/virtual server.

Because search is a vital part of any successful deployment, we have greatly
improved the search functionality in Liferay DXP. The performance and scalability
profile of a search engine is drastically different from that of a portal actively
serving web impressions. In the past, Liferay Portal either supported an embedded
Lucene search engine or a remotely deployed Solr search engine.. However, we
recommend you use Elasticsearch since Solr is not available in Liferay 7.4+.. This
allows the same engine to be used in embedded mode during development and in
a standalone mode for production.

If you were previously using Solr, you will need to migrate to Elasticsearch. Please
refer to our search documentation to properly configure your search server. Also
note that you can run your search server on the same server, but separate JVM, if
you have limited resources, though this is not recommended.

JDK
Another change to the compatibility matrix is that we’ve moved to JDK8. All app
servers are already JDK8 and JDK11 compatible on the compatibility matrix. Please
ensure your app server is properly configured.

Deployment Plan
With the introduction of the OSGi container in Liferay DXP, your deployment plan
will need to change as there are now a few different ways to deploy your plugins.

•	 OSGi bundles/modules are a new type of plugin in Liferay DXP. They are just
simple Java JARs with OSGi metadata. OSGi bundles can only be deployed
into the OSGi container. Bundles cannot access services deployed as WARs
besides Liferay’s core services. This is the recommended approach for most new
development and will be the approach Liferay takes for all new development.

•	 WARs are the traditional Liferay Plugin web applications (e.g., *-theme.war,
*-portlet.war, *-web.war) that you have grown to love. WARs do not benefit from
the explicit dependency and lifecycle management models provided by OSGi
but, luckily in Liferay DXP, all WARs (except an EXT) are converted into a WAB.
When you deploy a WAR file into Liferay, it automatically gets converted
into a WAB.

https://learn.liferay.com/dxp/latest/en/using-search/installing-and-upgrading-a-search-engine/elasticsearch/getting-started-with-elasticsearch.html
https://learn.liferay.com/dxp/7.x/en/using-search/installing-and-upgrading-a-search-engine/installing-a-search-engine.html

7

•	 WABs are web archive bundles. This will give you all the benefits of a bundle
without doing the conversion. This is the recommended approach for deploying
JavaEE applications (e.g. SpringMVC or JSF), legacy applications built for older
versions of Liferay, and themes.

All Liferay plugins (except an EXT) are now deployed to the OSGi container. They will
either be an OSGI bundle or a WAB.

CAUTION: You should never deploy Liferay artifacts (WARs, modules, WABs) directly
using your application server’s deployment tools.

When deploying OSGi bundles in an application server’s managed cluster (e.g.,
JBoss domain mode, WebLogic w/ Node Manager, WebSphere with Deployment
Manager), you will need to rely upon Liferay’s Cluster Deployment Helper. This tool
will take specified deployment artifacts and bundle them into a specialized WAR.
When the application server deploys and starts the WAR, the startup mechanisms
will place the OSGi modules into Liferay Digital Enterprise’s OSGi deployment folder
on the application server.

Rolling Releases
Beginning in 2020, we adopted a new rolling release strategy providing more
frequent Liferay Portal releases which included new features, improvements,
and bug fixes. Although the new release strategy saw huge improvements with
introducing new features in a timely fashion, it still led to a period where new
features would not be added to the product again for several months. Beginning in
2022, we have expanded our release strategy to deliver Liferay Portal releases on an
even more frequent and consistent schedule.

Since every release contains a smaller and more consumable set of features and
bug fixes, this also means upgrades between GA releases should be much easier
due to the limited scope and a diminished need for new upgrade processes. For
more information on updating to a new rolling release see the Maintaining a Liferay
Installation documentation.

Database Upgrade
Before You Start
Now that your infrastructure has been upgraded to supported versions, we
can focus our attention on the data. The first thing we should do is ensure a
proper backup is in place for us in case of failures.

Next, ensure you are running permission algorithm 6 if you are coming from 6.1.
If you are not on permission algorithm 6, you must migrate to that permission
algorithm. Information on how to migrate permission algorithms can be found here.

https://learn.liferay.com/dxp/latest/en/installation-and-upgrades/maintaining-a-liferay-installation.html
https://learn.liferay.com/dxp/latest/en/installation-and-upgrades/maintaining-a-liferay-installation.html
https://help.liferay.com/hc/articles/360017903232#migrate-to-algorithm-6

8

Also, ensure all your database indexes have been applied correctly. A missing index
can cause an upgrade to really slow down. If you are running into a slow upgrade,
later on, you may want to come back and add additional temporary indexes to help
speed them up.

If you have staging enabled, we recommend that you publish all content before
performing the upgrade.

Many of the 6.2 portal properties have been migrated to OSGi configuration. Please
use the upgradeProps Blade Cli command to see which ones are affected. You can
also check the traces printed by the process VerifyProperties during the upgrade to
get more information.

Liferay DXP 7.4 already disables the search indexation so there is no need to
disable it manually.

Database Upgrade Tool
In Liferay DXP, the database upgrades have been moved to a standalone tool.

To run the tool:
db_upgrade.sh or db_upgrade.sh

The upgrade requires three files to be configured before it can run: app-server.
properties, portal-upgrade-database.properties, portal-upgrade-ext.properties.
When you run the database upgrade tool, it will ask a series of questions about the
installation file paths and database connection properties and create these files
before starting the upgrade of the database.

The data upgrade is now broken up into two parts. The core upgrade is similar to
what you’ve seen in the past. The next part will upgrade the OSGi modules.
By default, the database upgrade tool is configured to upgrade both automatically.

https://learn.liferay.com/dxp/latest/en/installation-and-upgrades/upgrading-liferay/migrating-configurations-and-properties.html#migrating-portal-properties

9

Upgrade on Startup
For Liferay DXP 7.4, the auto upgrade behavior can be controlled by a new portal
property which covers both the Core and module upgrades:

•	Upgrade.database.auto.run

The default value for this property is false so upgrades will not run automatically on
startup to provide users more control over database changes.

This property can be especially useful for container environments where an
upgrade to the database is needed on startup. For this use-case, just set the
property to true. Be sure to treat this startup as you would any regular upgrade,
performing needed measures like making a backup, as well as any other
pre-upgrade tasks.

This property also affects the installation of fix packs. Please read the following
article for more information about it.

Troubleshooting
If your upgrade ran successfully, you can skip this section. If you run into issues,
here are some tips to help you:

•	 If you are trying to upgrade and running into issues, remember the tips we
presented before you began. Most upgrade issues are due to corrupted data.
The only way to fix issues of this kind is to fix or remove the corrupt data.

•	 A common, yet easily addressed, issue with the upgrade is properties settings
that have typos. If the upgrade is not connecting to the database or not finding
the correct files in the Liferay installation, double check the properties files.

Upgrade Report
To have more control over every upgrade and be able to solve potential issues, you
can enable the Upgrade Report which will provide you with useful information at
the end of the process. Please, find more detailed information on this in this article.

Upgrading the Modules
One of the advances for Liferay DXP is the separation between a logical “core” and
a series of “modules.” This allows us to take smaller incremental upgrades to help
triage and resolve data related issues.

For more advanced techniques, you can try to use the debugger. The advantage
of this is that, in some cases, you can fix the corrupt data in memory and it will be
saved in the database, fixing your data without a restart. It requires a high-level
of background knowledge about the tables though and is only recommended for
the most seasoned Liferay developers. This technique also opens up a new option
during module upgrades because OSGi bundles are upgraded in steps. You can use
a debugger to stop at any step and take a snapshot of your database there.

https://help.liferay.com/hc/articles/360056333511-Auto-Upgrade-in-DXP-7-3-and-Above
https://learn.liferay.com/w/dxp/installation-and-upgrades/upgrading-liferay/reference/upgrade-reports

10

In the case the upgrade encounters errors in modules, you can use the Gogo
shell to get more information and re-launch them once the issue is resolved.
You can configure the upgrade tool to open a Gogo Shell after the upgrade by
adding -s option:
•	./db_upgrade.sh -s or

•	db_upgrade.bat -s

You can also access the Gogo shell from the Control Panel or with telnet localhost
{port} configuring the address with the portal properties module.framework.
properties.osgi.console

After that, you can use the available commands in the upgrade namespace.
For example:

upgrade:list

upgrade:execute

upgrade:executeAll

upgrade:check

upgrade:checkAll

verify:list

verify:execute

By typing upgrade:list, the console will show you the modules you can upgrade
since all their upgrade dependencies are covered. If you do not see any modules,
that is because we need to upgrade its dependencies, first. You could enter the
command scr:info {upgrade_ qualified_class_name} to check which dependencies
are unsatisfied. For example:

scr:info com.liferay.journal.upgrade.JournalServiceUpgrade

By typing upgrade: list {module_name}, the console will show you the steps you
have to complete for upgrading your module. To understand how this works, it
can be useful to see an example; if you execute that command for the bookmarks
service module, you will get this:

Registered upgrade processes for com.
liferay.bookmarks.service 1.0.0

{fromSchemaVersionString=0.0.1, toSchemaVersionString=1.0.0-
step-3, upgradeStep=com.liferay.bookmarks.upgrade.v1_0_0.
UpgradePortletId@497d1106} {fromSchemaVersionString=1.0.0-
step-1, toSchemaVersionString=1.0.0, upgradeStep=com.liferay.
bookmarks.upgrade.v1_0_0.UpgradePortletSettings@31e8c69b}
{fromSchemaVersionString=1.0.0-step-2,
toSchemaVersionString=1.0.0-step-1, upgradeStep=com.liferay.
bookmarks.upgrade.v1_0_0.UpgradeLastPublishDate@294703b6}
{fromSchemaVersionString=1.0.0-step-3,
toSchemaVersionString=1.0.0-step-2, 9 upgradeStep=com.liferay.
bookmarks.upgrade.v1_0_0.UpgradeClassNames@7544b6e5}

This means that there is an available process to upgrade bookmarks from 0.0.1
version to 1.0.0. To complete it, you would need to execute four steps and the first
one is the one that starts on the initial version and finishes in the first step of the

11

target version (the highest step number, step-3 for this example), UpgradePortletId
in this case. The latest step is the one that starts in the latest step of the target
version (the lowest step number, step-1) and finishes in the target version (1.0.0),
UpgradePortletSettings in this case.

By typing upgrade:execute {module_name}, you will upgrade a module. It is
important to take into account that, if there is an error during the process, you will
be able to restart the process from the latest successfully executed step instead of
executing the whole process again as long as any errors did not corrupt the data.
You could check the status of your upgrade by executing upgrade:list {module_
name}.

By typing `upgrade:check at the Gogo shell, it will show you the modules that have
not reached the final version. Thus, you will have a way to identify the modules
whose upgrades have failed at the end of the process.

To understand how this command works, consider this example: Picture that the
upgrade for module com.liferay.dynamic.data.mapping.service fails in the step
1.0.0-step-2. If you execute the command upgrade:check at this moment
you will get:

Would upgrade com.liferay.dynamic.data.mapping.service
from 1.0.0-step-2 to 1.0.0 and its dependent modules

That means that you will need to fix the issue and execute the upgrade for that
module again. Notice that dependent modules for com.liferay.dynamic.data.
mapping.service need to be upgraded once the first one is upgraded properly.
Also, you can execute the verify process from the command line using verify:list.
This checks all available verify processes. Execute verify:execute {verify_
qualified_name} to run it.

Upgrade Framework - New Features
To facilitate the automation of upgrades and adaptation to the new Rolling Release
process, a couple of new features have been added to the Upgrade Framework:

•	 Upgrade Log Context: when this feature is enabled, additional information
is shown for every upgrade trace in the log file. At minimum, we show which
module a log line belongs to. Also we will provide the status and type of
upgrade you have just executed. Additionally, you can also print the Upgrade
Report using this format. To know how to enable this feature, please follow
these instructions.

•	 Upgrade MBean: since DXP 7.4 Update 78, a new feature that provides live
information on the result and type of an upgrade is available by using the
Upgrade on Startup feature. The mBean is available with the name upgrade
under category com.liferay.portal.upgrade and can be monitored by tools like
jconsole or visualvm:

https://learn.liferay.com/w/dxp/installation-and-upgrades/upgrading-liferay/reference/database-upgrade-tool-reference#configuring-portal-upgrade-extproperties
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
https://visualvm.github.io/plugins.html

12

Upgrading your Code
Finally, we are covering how to upgrade your code to Liferay DXP. If you have
multiple members of your team, this part can be started in tandem with the data
upgrade. In order to upgrade your code, we first need to familiarize you with the
Liferay Project SDK and the tools that are contained in it. But first, we will take a
look at the new way to customize Liferay: low-code extensions.

Low-Code Applications
Low-code and no-code development is a method to build applications faster
without needing in-depth knowledge of how to code. This is particularly important
in organizations where change happens quickly and where business users need to
be able to make system edits independently.

Before migrating your custom plugins, please consider replacing them for low-code
extensions so future upgrades can be executed more smoothly.

To achieve this, please review the documentation about the most common low-
code applications:

•	 Objects

•	 Client Extensions

Liferay Project SDK
As part of DXP, Liferay invested heavily on improving and modernizing its developer
tooling. The ANT-based Liferay Plugins SDK has been deprecated in favor of the new
Liferay Project SDK, a modern approach including Gradle or Maven build toolchains
that provide a more complete end-to-end experience. Liferay Project SDK contains:

•	 Liferay Workspace (Gradle or Maven based project scaffolding for CI
and DevOps).

https://learn.liferay.com/w/dxp/building-applications/objects
https://learn.liferay.com/w/dxp/building-applications/client-extensions

13

•	 Brand new Gradle and Maven plugins that cover all aspects of a Liferay project’s
build requirements, from backend services, to portlets, to modern JS front
end and themes.

•	 Blade CLI (new command line tool for fast developer workflows).

•	 Liferay Developer Studio (traditional fully integrated development environment
based on Eclipse).

The Liferay Project SDK has an easy installer that will install all the required tools
for Liferay DXP development. It will also give the option to set up your first Liferay
Workspace. Please download the appropriate installer for your OS (Windows,
Linux, OSX).

Liferay Workspace
One of your first tasks in upgrading your code is migrating it to our new project
structure based on Liferay Workspace. It should be very familiar to our original
Plugins SDK. It supports both Gradle and Maven and provides backwards
compatibility for your Plugins SDK-based projects. It will also leverage all the new
theme tooling we’ve built in Liferay DXP and integrates with Liferay Developer
Studio. Your new project will look like this:

.
├── configs

│ ├── common

│ ├── dev

│ ├── local

│ ├── prod

│ └── uat

├── modules

│ └── contains new OSGi modules

├── themes

│ └── contains new node.js based frontend themes

├── wars

│ └── contains traditional portlet and theme
WARs (like those built with PluginsSDK)

├── build.gradle

├── gradle-local.properties

├── gradle.properties

└── settings.gradle

If you are coming from a project that leveraged the Plugins SDK, you will be able
to move your Plugins SDK as one of the folders within Liferay Workspace. Keep in
mind, the Plugins SDK only supports creating WARs. You will not be able to create
OSGi bundles from the Plugins SDK.

14

Blade CLI
Alongside Liferay Workspace, we have a new command line tool called Blade CLI.
This tool allows you to create applications, extensions, etc. as you could in a Plugins
SDK, but it also provides additional functionality. It can start your Liferay server
or automatically deploy your project as you make changes. It is also the way you
create a new Liferay Workspace. If you are coming from an existing Plugins SDK
project structure, we have a way to automatically migrate you to the new Liferay
workspace project structure as shown below. To create a new Liferay Workspace:

$ blade init workspace-name

$ cd workspace-name

To upgrade an existing Plugins SDK to Liferay Workspace:
$ cd plugins-sdk

$ blade init -u

To create a new module:
$ blade create -t mvc-portlet module-name

Please consult our documentation to see additional commands provided by Blade.

Breaking Changes
Now that we have your code upgraded to our new project structure, perhaps the
most difficult part of upgrading your codebase is actually knowing what’s changed
since the last Liferay release and then making the appropriate changes to your
code to support it. For Liferay DXP, we have a section on breaking changes in our
documentation. It presents a chronological list of changes that break existing
functionality, APIs or contracts with third-party Liferay developers or users. Some of
the types of changes documented in the file include:

•	 Functionality that is removed or replaced.

•	 API incompatibilities: Changes to public Java or JavaScript APIs.

•	 Changes to context variables available to templates.

•	 Changes in CSS classes available to Liferay themes and portlets.

•	 Configuration changes: Changes in configuration files, like portal.properties,
system.properties, etc.

•	 Execution requirements: Java version, J2EE Version, browser versions, etc.

•	 Deprecations or end of support: For example, warning that a certain feature or
API will be dropped in an upcoming version.

•	 Recommendations: For example, recommending using a newly introduced
API that replaces an old API, in spite of the old API being kept in Liferay for
backward compatibility.

https://help.liferay.com/hc/articles/360029147071-Blade-CLI
https://learn.liferay.com/dxp/latest/en/liferay-internals/reference/7-4-breaking-changes.html
https://learn.liferay.com/dxp/latest/en/liferay-internals/reference/7-4-breaking-changes.html

15

It is important that you familiarize yourself with the full list to understand what
changes you may have to make with your codebase. We recommend reading the
list of breaking changes to get a general feel of how Liferay DXP will continue
to evolve in future versions. To view the current breaking changes for Liferay
DXP, visit the list here.

Liferay Developer Studio
Liferay Developer Studio is the all-in-one integrated development environment for
Liferay that some of you may already be using on your existing project. Our Liferay
Project SDK can optionally install Liferay Developer Studio. Liferay Developer
Studio includes a brand new Code Upgrade Tool to help upgrade your 6.x Plugins
SDK (or maven based) project to Liferay workspace and Liferay DXP. Even if your
team prefers another IDE or developer environment, we recommend you still
use Liferay Developer Studio at least to use the Code Upgrade Tool during
the upgrade process.

Code Upgrade Tool
The Code Upgrade Tool provides the following benefits:

•	 Identifies code affected by the API changes

•	 Describes each API change related to the code

•	 Suggests how to adapt the code

•	 Provides options, in some cases, to adapt code automatically

Upgrading from Plugins SDK
to Liferay Workspace
All you need to do is tell the Code Upgrade Tool where your existing 6.x Plugins SDK
project structure is located and it can automatically upgrade to Liferay Workspace.

https://learn.liferay.com/dxp/latest/en/liferay-internals/reference/7-4-breaking-changes.html

16

Finding Breaking Changes
Once you have given the Code Upgrade Tool your code, it will analyze it against the
list of known Breaking Changes and gives you an easy way to identify, learn about
breaking changes and most importantly action items to take to update your code. In
many cases, the tool can do this automatically for you.

Upgrading Customizations to
New Modular Structure
Sometimes there is no way to upgrade your existing code in places and will require
a new, more modular structure, such as with JSP hooks. The Code Upgrade Tool
can even help you in this very complex scenario.

For more information on how to use the Code Upgrade Tool and all of its
capabilities see this detailed tutorial.

https://learn.liferay.com/dxp/7.x/en/installation-and-upgrades/upgrading-liferay/upgrading_custom_development.html

17

Code Upgrade Scenarios
Migrating a 6.2 WAR to a Liferay
DXP-supported WAR
The first step you must take is updating your 6.2 portlet to a Liferay DXP portlet.
Even if you plan on converting your portlet to OSGi modules, we recommend that
you update your legacy WAR to be supported by Liferay DXP, first. If you jump from
a legacy 6.2 WAR to DXP modules, it will be much more difficult to debug and figure
out which issues are related to API changes and which are related to the migration
process. Use the Upgrade Assistant mentioned above to find the breaking changes
in your portlet and update them accordingly. Make sure to also update any Liferay
dependencies you’ve specified to Liferay DXP (e.g., ivy.xml, liferay-plugin-
package.properties, etc.). When you’ve completed the upgrade process and have a
Liferay DXP-supported WAR, you’ll need to make a decision on whether you should
convert your portlet to an OSGi module. We’ve outlined scenarios below that will
help you make your decision.

Converting a Portlet to an OSGi Module
Now that we’ve created our workspace and updated your portlet to a Liferay DXP
supported WAR, we can consider if you want to convert your portlet to an OSGi
module.

You should convert when:

•	 You have a very large application with many lines of code. For example, if there
are many developers that are collaborating on an application concurrently and
making changes frequently, separating the code into modules will increase
productivity and provide the agility to release more frequently.

•	 Your plugin has reusable parts that you’d like to consume from elsewhere.
For instance, suppose you have business logic that you’re reusing in multiple
different projects. Instead of copying that code into several different WARs and
deploying those WARs to different customers, you can convert your application
to modules and consume the services provided by those modules from other
modules.

You should NOT convert when:

•	 You have a portlet that’s JSR-168/286 compatible and you still want to be able to
deploy it into another portlet container. If you want to retain that compatibility,
it is recommended to stay with the traditional WAR model.

•	 You’re using a complex legacy web framework that is heavily tied to the Java EE
programming model, and the amount of work necessary to make that work with
OSGi is more than you feel is necessary or warranted.

18

•	 Your plugin interacts with other JEE app server features, for instance EJBs,
message driven beans, etc. Module-based applications are not as portable when
they directly interact with the app server.

•	 Your legacy application’s original intent is to have a limited lifetime.

If you decide to convert your portlet to an OSGi module, we’ll walk you through it
here:

For a portlet: blade create -t mvc-portlet [APPLICATION_NAME]

If you need Service Builder: blade create -t servicebuilder -p [ROOT_ PACKAGE]
[APPLICATION_NAME]

The first thing you will notice is that projects now use the standard maven project
structure.

.

├── bnd.bnd

├── build.gradle

└── src

 └── main

 ├── java

 │ └── com

 │ └── liferay

 │ └── samples

 │ └── servicebuilder

 │ └── web

 │ └── JSPPortlet.java

 └── resources

 ├── META-INF

 │ └── resources

 │ ├── css

 │ │ ├── _partial.scss

 │ │	 └── main.scss

 │ ├── edit_foo.jsp

 │ ├── foo_action.jsp

 │ ├── icon.png

 │ ├── init.jsp

 │ └── view.jsp

 └── content

 └── Language.properties

In your workspace, the bnd.bnd file is very important, as it will automatically apply
the liferay-gradle-plugin to your Gradle project. The liferay-gradle-plugin will apply
the Gradle Java plugin along with other Liferay plugins that are very useful such as

19

css-builder, source-formatter, and lang-builder. You will notice that you do not need
a portlet.xml/liferay-portlet.xml file. The contents of that file should be moved into
the portlet Java class.

@Component(
immediate = true,
property = {

“com.liferay.portlet display-category=category.sample”,
	“com.liferay.portlet.icon=/icon.
png”, “javax.portlet.name=1”,
“javax.portlet.display-name=Tasks Portlet”, “javax.portlet.
security-role-ref=administrator,guest,power-user”,
“javax.portlet.init-param.clear-request-parameters=true”,
“javax.portlet.init-param.view-template=/view.jsp”,
“javax.portlet.expiration-cache=0”,
“javax.portlet.supports.mime-type=text/html”,
“javax.portlet.resource-bundle=content.Language”,
 “javax.portlet.info.title=Tasks Portlet”,
“javax.portlet.info.short-title=Tasks”,
“javax.portlet.info.keywords=Tasks”,
},

service = Portlet.class
)

public class TasksPortlet extends MVCPortlet {

}

If you’ve created a service builder template, you will notice two different plugins
generated for you.

`plugin-name-api` - This is where the interfaces of your services will live.

`plugin-name-service` - This is where the implementations of your services will live.

The packaging will be similar to the portlet above.

Upgrading Themes
In Liferay DXP, we’ve created a new set of theme tools that front-end developers
should be much more familiar with. They are built using Node.js, yo and gulp. If
you have an existing theme in your Plugins SDK, you can migrate them to your new
Liferay Workspace. The new theme tools also help facilitate the theme upgrade
process. Whether upgrading from 6.x to 7.0/7.1 or 7.0 to 7.1, you would continue to
utilize

gulp upgrade

However, there are some differences when upgrading from 6.1 to 7.0 versus 6.2 to
7.0. Please consult the appropriate documentation for the differences:

1. Upgrading to DXP 7.2

2. Upgrading from Liferay Portal 6.1 to 7.0

https://help.liferay.com/hc/articles/360029316671-Upgrading-a-Theme-to-7-2?utm_source=whitepaper&utm_medium=content&utm_content=upgrading%20from%20liferay%206.x%20to%20liferay%20dxp%20
https://help.liferay.com/hc/articles/360017878372-Upgrading-Your-Theme-fromLiferay-Portal-6-1-to-7-0-?utm_source=whitepaper&utm_medium=content&utm_content=upgrading%20from%20liferay%206.x%20to%20liferay%20dxp%20

20

When upgrading from 7.0 to 7.1, many of your DXP 7 themes should continue
working. You may wish to run the theme upgrade tools. Since DXP 7.1 upgrades to
Bootstrap 4 (we use Bootstrap 4.4.1 in Liferay 7.4), there are CSS style deprecations
and removals that need to be executed. A guide to upgrading your theme from 6.2,
7.0, and 7.1 to 7.2 can be found here. The final change to themes is the removal
of Velocity templates. Velocity templates were deprecated in DXP 7.0 in favor of
Freemarker templates. If your DXP 7.0 project uses Velocity, you must convert them
to Freemarker.

Additional Resources
•	 Liferay DXP Upgrade Reference Guide — Read this first before planning and

executing your upgrade.

•	 What’s New in Liferay DXP 7.4 — Summary of the new and improved features in
Liferay DXP 7.4.

•	 .Liferay Developer Guide — Provides key tutorials for various stages of the code
upgrade process. The below sections are extremely important to review and
understand, especially when deciding when to convert WAR based plugins to
OSGi modules.

•	 Migrating from Plugins SDK to Liferay Workspace

•	 Planning Upgrades and Optimizations for WAR based plugins

•	 Upgrading Plugins

•	 Upgrading Themes

•	 Upgrading and Migrating From EXT

•	 Blade CLI — Command line tool for developing in Liferay DXP

•	 Liferay Blade Samples — Repository of sample code and use cases

Summary
An upgrade to Liferay DXP has the potential to unlock the full range of benefits
in the latest version of the Liferay platform. But each company must determine
for itself the best timing for an upgrade after carefully weighing the costs, risks,
timeline, labor involved with the expected benefits to the business.

Moving Forward
Our Liferay Global Services team is ready to provide a deep analysis of your
specific requirements, help you form a personalized upgrade plan and offer
you our deep expertise to set your company up for success with Liferay. Learn
more about Liferay Digital Experience Platform and our consulting services
by contacting: sales@liferay.com.

https://help.liferay.com/hc/en-us/articles/360029316671-Upgrading-a-Theme-to-7-2
https://learn.liferay.com/dxp/7.x/en/installation-and-upgrades/upgrading-liferay/upgrade-basics/upgrade-overview.html
https://learn.liferay.com/dxp/latest/en/getting-started/whats-new-74.html
https://learn.liferay.com/dxp/7.x/en/installation-and-upgrades/upgrading-liferay/upgrading_custom_development.html
https://learn.liferay.com/w/dxp/building-applications/tooling/blade-cli/generating-projects-with-blade-cli
https://help.liferay.com/hc/articles/360017884652-Modularizing-an-Existing-Portlet
https://learn.liferay.com/dxp/7.x/en/installation-and-upgrades/upgrading-liferay/upgrading_custom_development.html
https://help.liferay.com/hc/articles/360029316671-Upgrading-a-Theme-to-7-2
https://help.liferay.com/hc/articles/360029005712-Upgrading-Ext-Plugins
https://learn.liferay.com/w/dxp/building-applications/tooling/blade-cli/installing-and-updating-blade-cli
https://github.com/liferay/liferay-blade-samples/tree/7.3
http://sales@liferay.com

220316

Liferay makes software that helps companies create
digital experiences on web, mobile and connected
devices. Our platform is open source, which makes it
more reliable, innovative and secure. We try to leave
a positive mark on the world through business and
technology. Hundreds of organizations in financial
services, healthcare, government, insurance, retail,
manufacturing and multiple other industries use
Liferay. Visit us at liferay.com.

© 2023 Liferay, Inc. All rights reserved.

Liferay makes software that helps companies create
digital experiences on web, mobile and connected
devices. Our platform is open source, which makes it
more reliable, innovative and secure. We try to leave
a positive mark on the world through business and
technology. Hundreds of organizations in financial
services, healthcare, government, insurance, retail,
manufacturing and multiple other industries use
Liferay. Visit us at liferay.com.

© 2023 Liferay, Inc. All rights reserved.

	Table of Contents
	Introduction
	Upgrade General Timeline
	Important Considerations:
	General Timelines:
	Architecture Review: 1–2 weeks
	Scalability Review: 1–2 weeks
	Liferay Upgrade: 1–4 months
	Testing: 1–2 weeks
	Performance Tuning: 1–2 weeks

	Infrastructure Changes
	Compatibility Matrix
	Search
	JDK
	Deployment Plan
	Rolling Releases

	Database Upgrade
	Before You Start
	Database Upgrade Tool
	Upgrade on Startup
	Troubleshooting
	Upgrade Report
	Upgrading the Modules

	Upgrade Framework - New Features

	Upgrading your Code
	Low-Code Applications
	Liferay Project SDK
	Liferay Workspace
	Blade CLI

	Breaking Changes
	Liferay Developer Studio
	Code Upgrade Tool
	Upgrading from Plugins SDK to Liferay Workspace
	Finding Breaking Changes
	Upgrading Customizations to New Modular Structure

	Code Upgrade Scenarios
	Migrating a 6.2 WAR to a Liferay DXP-supported WAR
	Converting a Portlet to an OSGi Module
	Upgrading Themes

	Additional Resources
	Summary
	Moving Forward

