
Liferay
Digital Experience
Platform 7.1
Deployment Checklist

Table of Contents
Introduction � 1

Reference Architecture � 1

Virtualized and Cloud Deployments � � � � � � � � � 3

Fault Tolerance � 4

Performance � 4

Scalability � 5

Security � 5

Liferay DXP Tuning Guidelines � � � � � � � � � � � � � � � 5

Application Server Tuning � � � � � � � � � � � � � � � � � 5

Database Connection Pool � � � � � � � � � � � � � � � � 5

Deactivate Development Settings in the JSP

Engine � 6

Thread Pool � 7

Java Virtual Machine Tuning � � � � � � � � � � � � � � � 8

Garbage Collector � 8

Java Heap � 8

JVM Advanced Options � � � � � � � � � � � � � � � � � � 9

Monitoring GC and JVM � � � � � � � � � � � � � � � � 10

Liferay DXP Tuning Parameters � � � � � � � � � � � � 12

Caching � 12

Cache Replication � 14

Counter Increment � 14

Document Library Previews � � � � � � � � � � � � � 15

Document Library Storage � � � � � � � � � � � � � � 15

Direct Servlet Context Reload � � � � � � � � � � � � 16

Enabled Locales � 17

Encryption Algorithms � � � � � � � � � � � � � � � � � 17

Groups Complex SQL � � � � � � � � � � � � � � � � � � � 18

Message Bus � 18

Portlet CSS � 20

Servlet Filters � 20

Session Timeout � 21

Template Caching � 21

User Session Tracker � � � � � � � � � � � � � � � � � � � 22

Liferay Enterprise Search � � � � � � � � � � � � � � � � � 23

Sizing Your Deployment � � � � � � � � � � � � � � � � 23

Configuring Elasticsearch � � � � � � � � � � � � � � � 24

Tuning Your Deployment � � � � � � � � � � � � � � � 25

Monitoring Your Deployment � � � � � � � � � � � � 26

Securing Your Deployment � � � � � � � � � � � � � � 26

Summary � 27

Disclaimer � 27

Moving Forward � 28

Liferay Connected Services � � � � � � � � � � � � � � � 28

Liferay and Dynatrace � � � � � � � � � � � � � � � � � � � 28

Liferay Global Services � � � � � � � � � � � � � � � � � � 28

1

Introduction
The Liferay Engineering and Global Services teams have performed intensive
performance and scalability testing on Liferay Digital Experience Platform (DXP)
7�1 and the accumulated knowledge has been condensed into this checklist�
Although a Liferay DXP deployment’s performance profile may differ depending
on several factors, this checklist will provide a list of critical parameters to monitor
for tuning and some initial settings to use as a starting point� These initial settings
have withstood heavy testing by the Liferay Engineering scalability team�

The Liferay Global Services team also has a specialized Go Live package that can
help with your pre-production tuning and configuration.

Reference Architecture
The selection of an appropriate architecture is one of the first decisions in your
deployment path� To select an appropriate architecture, you must consider:

• Information Security: Securing sensitive hardware and information from
malicious attack and intrusion

• Performance: Supporting the desired number of total users,
concurrent transactions, etc�

• Fault Tolerance: Maintaining uptime during unexpected failure or
scheduled maintenance

• Flexibility and Scalability: Designing an expandable architecture to support
additional features and users without significant redesign

https://web.liferay.com/documents/14/8440803/GS+Kick+Start+Sales+Kit+Go+Live.pdf?_ga=1.88200089.341390067.1452539188&utm_source=whitepaper&utm_medium=content&utm_content=dxp%20deployment%20checklist

2

Although appearing somewhat complex, the reference architecture depicted in
Figure 1 provides high levels of fault tolerance and flexibility.

LOAD BALANCER

LOAD BALANCER

Load Balancer
Tier

Firewall

APACHE WEB
SERVER

APACHE WEB
SERVER

Web Tier

APPLICATION
SERVER

APPLICATION
SERVER

Application
Tier

DATABASE
SERVER

DATABASE
SERVER

Database Tier

Figure 1 - Liferay DXP Reference Architecture

The architecture contains the following tiers:

• Firewall: Intrusion detection and prevention

• Load Balancer Tier: Ensures smooth distribution of load between multiple
web server resources

• Web Server Tier: Delivers static content elements like images, rich media,
CSS files, etc. Also provides integration modules to single sign-on solutions
like CA Siteminder, Oracle Identity, Ping, etc� Keep in mind a content delivery
network (CDN) may take some of static file caching and edge caching the
responsibilities of the web server� However, you may still need this layer to
more easily achieve functions like URL rewriting�

• Application Tier: Hosts Liferay supported application servers like Tomcat,
JBoss, Oracle Weblogic, and IBM Websphere (please see Liferay DXP
Compatibility Matrix for additional application servers)� Also hosts search
engines like Solr and Elasticsearch�

• Database Tier: Hosts Liferay supported database servers like MySQL, Oracle,
MS SQL, IBM DB2, Postgres (please see Liferay DXP Compatibility Matrix for
additional platforms)

https://web.liferay.com/documents/14/21598941/Liferay+DXP+7.1+Compatibility+Matrix/9f9c917a-c620-427b-865d-5c4b4a00be85
https://web.liferay.com/documents/14/21598941/Liferay+DXP+7.1+Compatibility+Matrix/9f9c917a-c620-427b-865d-5c4b4a00be85
https://web.liferay.com/documents/14/21598941/Liferay+DXP+7.1+Compatibility+Matrix/9f9c917a-c620-427b-865d-5c4b4a00be85

3

The hardware deployed within each tier varies depending on the type of
transactions. We will use Liferay Engineering’s benchmarking environment
as a hardware specification guide:

Load BaLancer Tier
Cisco Load Director or Cisco Content Services Switch (CSS) or F5 Big-IP

WeB Tier
Provides caching, compression, and other capabilities using Apache, Nginx,
Varnish, etc�

• 1 - Intel Core 2 Duo E6405 2�13GHz CPU, 4GB memory,
1-146GB 10k RPM SCSI

appLicaTion Tier
Represents the workhorse of the architecture

• 2 - Intel Xeon E5-2643 v4 3�40GHz CPU, 64GB memory,
2-300GB 15K RPM SATA 6Gbps - used for Liferay Portal

• 2- Intel Xeon E5-2643 v4 3�40GHz CPU, 64GB memory,
2-300GB 15K RPM SATA 6Gbps - used for Elasticsearch

daTaBase Tier
• 2 - Intel Xeon E5-2643 v4 3�40GHz CPU, 64GB memory,

2-300GB 15K RPM SATA 6Gbps

Although the application servers have 64GB of physical memory, you may
choose to deploy with less if your Java Virtual Machine (JVM) does not utilize
large heap sizes� Modern operating systems will also use any available physical
memory for file system caches.

Virtualized and Cloud Deployments
While the reference architecture describes a physical deployment, the same
concepts may be applied to a cloud based or virtualized deployment� Many Liferay
customers choose to deploy on either public clouds (e�g�, Amazon EC2) or their
own private clouds (e�g�, VMWare VSX based private cloud)� Each physical machine
may be replaced by appropriate quantities of virtual machines�

4

In the virtualized deployments, it is critical to allocate sufficient CPU resources.
For instance, for systems deployed to Amazon AWS, allocated CPUs are calculated
using Amazon EC2 Compute Units� However, 1 Compute Unit does not equal to
1 physical CPU or even 1 core on a CPU. In Amazon’s terms, each application
server used in the reference architecture equates to roughly a “Cluster Compute
Quadruple Extra Large Instance,” or 33�5 EC2 Compute Units� Thus, to properly
plan the virtualized/cloud deployment, customers must account for not only
virtualization overhead, but also ensure allocation of sufficient CPU resources.

Fault Tolerance
The reference architecture is fault tolerant at every level� With clusters at the web,
application, and database tier, you may suffer a catastrophic hardware failure of
any node and continue to service users with little performance degradation�

The depicted reference architecture represents the minimum deployment units
to ensure proper fault tolerance within a single data center� You may increase
the number of servers within each tier according to your load patterns to achieve
a multiplier effect in the number of users the deployment can support while
maintaining sufficient fault tolerance.

Multi-data-center fault tolerant architectures are not provided as part of the
reference architecture�

Performance
Each deployment’s performance characteristics will vary depending on the type of
activity and the performance of custom application elements� Liferay Engineering
has created a series of scenarios to benchmark Liferay DXP’s out of the box
performance characteristics for content management, collaboration and social
enterprise scenarios� Results from these reference architectures have indicated
Liferay DXP can support over 46,750 virtual collaboration users and over 79,000
logins per minute with an average login time of 250 milliseconds� Liferay DXP
accomplished this load within the reference architecture while utilizing no more
than 40 percent of CPU resources in the Web Tier, 95 percent of CPU resources in
the Application Tier, and less than 5 percent of CPU resources in the Database Tier�

5

Scalability
Liferay Engineering’s testing has shown Liferay DXP to scale linearly. Thus, if you
know a single application server supports X virtual users and assuming sufficient
database and web server resources, you may calculate the total number of
application servers required�

Security
The firewall preceding the Load Balancer Tier will provide sufficient intrusion
detection and prevention. However, depending on your organization’s information
security requirements, you may introduce additional firewall layers between
each tier to further secure the infrastructure�

Liferay DXP Tuning Guidelines
When tuning your DXP, there are several factors to take into consideration,
some specific to Liferay DXP, while others are concepts that apply to all Java and
Java enterprise applications� The following guidelines are meant to serve as an
initial baseline from which to tune your specific deployment.

Application Server Tuning
Although the actual setting names may differ, the concepts are applicable across
most application servers� We will use Tomcat as an example to demonstrate
application server tuning concepts� You should also consult your application server
provider’s documentation for additional specific settings that they may advise.

Database Connection Pool
The database connection pool is generally sized at roughly 30-40 percent of the
thread pool size� The connection pool provides a connection whenever DXP needs
to retrieve data from the database (e�g�, user login, etc)� If this size is too small,
requests will queue in the server waiting for database connections� However,
too large a setting will mean wasting resources with idle database connections�

As with thread pools, you should monitor these settings and adjust them based
on your performance tests�

6

TomcaT 9.0.x
In Tomcat, the connection pools are configured in the Resource elements in
$CATALINA_HOME/conf/ Catalina/localhost/ROOT�xml�

<Resource name=”jdbc/LiferayPool” auth=”Container”
 factory=”com.zaxxer.hikari.HikariJNDIFactory”
 type=”javax.sql.DataSource”
 minimumIdle=”10”
 maxLifetime=”0”
 maximumPoolSize=”85”
 driverClassName=”com.mysql.jdbc.Driver”
 dataSource.user=”XXXXXX”
 dataSource.password=”XXXXXXXXX”
jdbcUrl=”jdbc:mysql://localhost/lportal?characterEncoding=UTF-8&am
p;dontTrackOpenResources=true&holdResultsOpenOverStatementC
lose=true&useFastDateParsing=false&useUnicode=true”
/>

In this configuration, we start with 10 connections, and a maximum of 85
connections in the pool�

You may choose from a variety of database connection pool providers,
including C3P0, HikariCP, and Tomcat. You may also choose to configure the
Liferay JDBC settings in your portal�properties� The choice of JNDI or portal�
properties should be something you do based on your application server choice
and IT standards� For instance, if you are using Tomcat and your internal standards
do not dictate JNDI for JEE resource declarations, then using portal-ext�properties
is probably the simpliest path�

Deactivate Development Settings in the JSP Engine
Most application servers have their JSP Engine configured for development mode.
Liferay recommends deactivating many of these settings prior to entering
production:

• Development mode: This will enable the JSP container to poll the file system
for changes to JSP files.

• Mapped File: Generates static content with one print statement versus one
statement per line of JSP text�

7

TomcaT 9.0.x
In the $CATALINA_HOME/conf/web�xml, update the JSP servlet to look like
the following

<servlet>
 <servlet-name>jsp</servlet-name>
 <servlet-class>org.apache.jasper.servlet.JspServlet</servlet-class>
 <init-param>
 <param-name>development</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>mappedFile</param-name>
 <param-value>false</param-value>
 </init-param>
 <load-on-startup>3</load-on-startup>
</servlet>

Thread Pool
Each incoming request to the application server consumes a worker thread for
the duration of the request� When no threads are available to process requests,
the request will be queued waiting for the next available worker thread. In a finely
tuned system, the number of threads in the thread pool should be relatively
balanced with the total number of concurrent requests� There should not be a
significant amount of threads left idle waiting to service requests.

Liferay Engineering recommends setting this initially to 50 threads and then
monitoring it within your application server’s monitoring consoles. You may wish
to use a higher number (e�g�, 250) if your average page times are in the 2-3s range�
Too few threads in the thread pool may lead to excessive request queuing while too
many threads may lead to excessive context switching�

TomcaT 9.0.x
In Tomcat, the thread pools are configured in the Connector element in
$CATALINA_HOME/conf/server�xml� Further information can be found in
the Apache Tomcat documentations� Liferay Engineering used the following
configuration during testing:

<Connector maxThreads=”75” minSpareThreads=”50” maxConnections=”16384”
port=”8080” connectionTimeout=”600000” redirectPort=”8443” URIEncoding=”UTF-8”
maxKeepAliveRequests=”-1” address=”xxx.xxx.xxx.xxx”/>

Additional tuning parameters around Connectors are available, including the
connector types, the connection timeouts and TCP queue� You should consult
the appropriate Tomcat documentation for further details�

https://tomcat.apache.org/tomcat-8.0-doc/config/http.html

8

Java Virtual Machine Tuning
Tuning the JVM primarily focuses on tuning the garbage collector and the Java
memory heap� These parameters look to optimize the throughput of your application�
We used Oracle’s 1.8 JVM for the reference architecture. You may also choose
other supported JVM versions and implementations� Please consult the
Liferay DXP Compatibility Matrix for additional compatible JVMs�

Garbage Collector
Choosing the appropriate garbage collector (GC) will help improve the
responsiveness of your Liferay DXP deployment� Liferay recommends using
the concurrent low pause collectors:

-XX:+UseParNewGC -XX:ParallelGCThreads=16 -XX:+UseConcMarkSweepGC
-XX:+CMSParallelRemarkEnabled -XX:+CMSCompactWhenClearAllSoftRefs
-XX:CMSInitiatingOccupancyFraction=85 -XX:+CMSScavengeBeforeRemark

You may choose from other available GC algorithms including parallel throughput
collectors and G1 collectors. Liferay recommends first starting your tuning using
parallel collectors in the new generation and concurrent mark sweep (CMS) in
the old generation�

Note: the value 16 in “ParallelGCThreads=16” will vary based on the type of
CPUs available. We recommend setting the value according to CPU specification.
On Linux machines, you may find the number of available CPUs by running
“cat /proc/cpuinfo”�

Note: There are additional “new” algorithms like G1, but Liferay Engineering’s
tests for G1 have indicated that it does not improve performance� Your application
performance may vary and you should add it to your testing and tuning plans�

Java Heap
When most people think about tuning the Java memory heap, they think of
setting the maximum and minimum memory of the heap� Unfortunately,
most deployments require far more sophisticated heap tuning to obtain optimal
performance, including tuning the young generation size, tenuring durations,
survivor spaces and many other JVM internals�

For most systems, Liferay recommends starting with at least the following
memory settings:

-server -XX:NewSize=1024m -XX:MaxNewSize=1024m -Xms4096m -Xmx4096m
-XX:MetaspaceSize=300m -XX:MaxMetaspaceSize=300m -XX:SurvivorRatio=12
-XX:TargetSurvivorRatio=90 -XX:MaxTenuringThreshold=15

https://web.liferay.com/documents/14/21598941/Liferay+DXP+7.1+Compatibility+Matrix/9f9c917a-c620-427b-865d-5c4b4a00be85

9

On systems that require large heap sizes (e.g., above 4GB), it may be beneficial
to use large page sizes� You may activate large page sizes using the following
JVM options:

-XX:+UseLargePages -XX:LargePageSizeInBytes=256m

You may choose to specify different page sizes based on your application profile.

Note: To use large pages in the JVM, you must configure your underlying
operating system to activate them� In Linux, run “cat /proc/meminfo” and look at
“huge page” items�

Caution: You should avoid allocating more than 32GB to your JVM heap�
Your heap size should be commensurate with the speed and quantity of available
CPU resources�

JVM Advanced Options
The following advanced JVM options were also applied in the Liferay benchmark
environment:

-XX:+UseCompressedOops -XX:+DisableExplicitGC -XX:-UseBiasedLocking
-XX:+BindGCTaskThreadsToCPUs -XX:+UseFastAccessorMethods
-XX:InitialCodeCacheSize=32m -XX:ReservedCodeCacheSize=96m

Please consult your JVM documentation for additional details on advanced
JVM options�

Combining the above parameters together, we have:

-server -XX:NewSize=1024m -XX:MaxNewSize=1024m -Xms4096m -Xmx4096m
-XX:MetaspaceSize=300m -XX:MaxMetaspaceSize=300m -XX:SurvivorRatio=12
-XX:TargetSurvivorRatio=90 -XX:MaxTenuringThreshold=15
-XX:+UseLargePages -XX:LargePageSizeInBytes=256m -XX:+UseParNewGC
-XX:ParallelGCThreads=16 -XX:+UseConcMarkSweepGC
-XX:+CMSParallelRemarkEnabled -XX:+CMSCompactWhenClearAllSoftRefs
-XX:CMSInitiatingOccupancyFraction=85 -XX:+CMSScavengeBeforeRemark
-XX:+UseCompressedOops -XX:+DisableExplicitGC -XX:-UseBiasedLocking
-XX:+BindGCTaskThreadsToCPUs -XX:+UseFastAccessorMethods
-XX:InitialCodeCacheSize=32m -XX:ReservedCodeCacheSize=96m

Caution: The above JVM settings should formulate a starting point for your
performance tuning. Each system’s final parameters will vary due to a variety of
factors including number of current users and transaction speed�

10

Liferay recommends monitoring the garbage collector statistics to ensure
your environment has sufficient allocations for metaspace and also for the
survivor spaces� Simply using the guideline numbers above may results in
dangerous runtime scenarios like out of memory failures� Improperly tuned
survivor spaces also lead to wasted heap space�

Monitoring GC and JVM
Although the previously introduced parameters give you a good start to tuning
your JVM, you must monitor GC performance to ensure you have the best settings
to meet your needs� There are several tools to help you monitor Oracle JVM
performance including:

VisuaL Vm
This tool provides a centralized console for viewing Oracle JVM performance
information, including garbage collector activities�

Figure 2 - Visual VM’s Visual GC

Jmx consoLe
This tool helps display various statistics like Liferay’s distributed cache performance,
the performance of application server threads, JDBC connection pool usage, etc�1

1 The JMX Console is the preferred tool to use when observing Tomcat performance information�

11

Add the following to your application server’s JVM arguments to enable
JMX connections:

-Dcom.sun.management.jmxremote=true
-Dcom.sun.management.jmxremote.port=5000
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

Figure 3 - Visual VM’s JMX Console

GarBaGe coLLecTor VerBose LoGGinG
Add the following to your JVM arguments to activate verbose logging for the JVM
garbage collector�

-verbose:gc -Xloggc:/tmp/liferaygc1.log -XX:+PrintGCDetails -XX:+PrintGCCause
-XX:+PrintGCApplicationConcurrentTime -XX:+PrintGCApplicationStoppedTime

You will need these logs to properly tune the JVM�

Note: To ensure you do have sufficient debugging information should your JVM
encounter out of memory scenarios, you should consider adding:

-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/dumps

12

Liferay DXP Tuning Parameters
Liferay DXP ships with many parameters already optimized for performance�
However, depending on your specific use case, you may wish to tune
additional settings� Unless otherwise stated, you may tune these parameters
in the portal�properties2 file or using System Settings.

Caching

WARNING: Care should be taken when tuning caching� The size of
the cache will have a direct impact on the amount of memory your
application server has to work with� The larger the cache, the less
memory available for processing requests�

If your application caching requirements exceed what the out of
the box, in-process provides in scalability, Liferay recommends
investigating the use of Terracotta as a clustered, out of process cache�

Liferay DXP relies upon both content and object caching to minimize database
interaction and excessive object creation� Out of the box, Liferay DXP leverages
EHCache for its caching needs. You may configure additional caches including
Terracotta, Oracle Coherence Cache, etc� For the purposes of our discussion,
we will focus on the out-of-box EHCache�

To monitor the caches, you will need to rely upon the JMX Console�3 In the
preceding figure, we see the JMX Console view for monitoring a cache used to
store user information:

CacheHits – Displays the number of requests that successfully retrieved from the
cache rather than going to the database� This includes objects stored in memory
and stored on disk�

CacheMisses – Displays the number of requests that could not find its object in
cache and thus had to retrieve from the database�

2 We recommend you consult the official Liferay DXP documentation for instructions on how to override properties stored in
portal�properties, how to change settings using System Settings, and how to export and import settings using System Settings�

3 You may also use Liferay Connected Services to help monitor cache utilization�

13

InMemoryHits – Displays the number of requests that successfully retrieved
from the in-memory cache� This does not include requests that triggered
retrievals from on disk storage�

ObjectCount – The total number of objects in cache�

OnDiskHits – The total number of requests that could not find their objects
in memory, but successfully located the objects on the local file system. This is
only applicable if you have enabled cache overflow to disk.4

Figure 4 - Monitoring Liferay Data Caches

By default, Liferay DXP’s cache configuration uses the memory store and allows
for a maximum of 10,000 elements� Although using a disk store may increase the
size of the cache, Liferay does not recommend this approach due the increased
dependency upon disk IO operations�

Let us use the user cache as our tuning example. After monitoring, you have
determined that the user cache requires tuning due to the number of cache misses�

You may tune and override Liferay’s cache settings either via a plugin or via
changes to portal-ext�properties�

Basic Liferay DXP data caches of interest include:

4 Cache overflow to disk means allow Ehcache to serialize (write) objects to the local file system. This is akin to using virtual
memory page at the operating system level�

14

com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portal.
 model.impl.AccountImpl
com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portal.
 model.impl.ContactImpl
com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portal.
 model.impl.GroupImpl
com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portal.
 model.impl.LayoutImpl
com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portal.
 model.impl.LayoutSetImpl
com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portal.
 model.impl.ResourceImpl

The following caches may be of interest, depending on the features you are
leveraging in the product:

com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portlet.
 blogs.model.impl.BlogsEntryImpl
com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portlet.
 wiki.model.impl.WikiPageImpl
com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portlet.
 messageboards.model.impl.MBCategoryImpl
com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portlet.
 messageboards.model.impl.MBThreadImpl
com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portlet.
 journal.model.impl.JournalArticleImpl
com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portlet.
 journal.model.impl.JournalStructureImpl
com.liferay.portal.kernel.dao.orm.EntityCache#com.liferay.portlet.
 journal.model.impl.JournalTemplateImpl

Cache Replication
Liferay DXP ships with an enhanced algorithm that uses more efficient thread
pooling for cached object and event replication. To configure the DXP to use
this algorithm, simply activate clustering using the following portal�properties:

 cluster.link.enabled=true

Counter Increment
Liferay DXP uses an internal sequence generator for generating object IDs�
Increasing the increment size of this counter will reduce the number of times it
must communicate with the database to reserve IDs� We recommend setting this
number at roughly 2000, depending on the load of your system� You may do so by
adding the following to portal-ext�properties:

counter.increment=2000

15

Document Library Previews
Liferay DXP’s Document Library’s preview capabilities enable users to view
assets stored in the repository without downloading the file. The document
preview feature relies upon PDFBox + OpenOffice Server or ImageMagick.

The PDFBox + OpenOffice Server approach uses OpenOffice Server to first
convert documents to PDF and then uses PDFBox to generate images from
the PDFs. This approach may be less accurate and certain types of files may not
render properly. To configure this approach, please set the following properties
in your portal-ext�properties:

openoffice.server.enabled=true
openoffice.server.host=<IP_ADDRESS>
openoffice.server.port=<PORT>
openoffice.cache.enabled=true

You must also install OpenOffice in “server” or “headless” mode.

The ImageMagick approach requires installation of ImageMagick on your OS
hosting Liferay DXP� You may obtain ImageMagick from imagemagick�org�
To configure DXP to use ImageMagick, you must configure:

imagemagick.enabled=true
imagemagick.global.search.path[apple]=/opt/local/bin:/opt/local/
share/ghostscript/fonts:/opt/local/share/fonts/urw-fonts
imagemagick.global.search.path[unix]=/usr/local/bin:/usr/local/
share/ghostscript/fonts:/usr/local/share/fonts/urw-fonts
imagemagick.global.search.path[windows]=C:\\Program
Files\\gs\\bin;C:\\Program Files\\ImageMagick

You may wish to further tune ImageMagick depending on your document sizes
and other parameters. You may find more details at: imagemagick�org/script/
architecture�php�

In addition, preview generation can be quite expensive� Thus, by default,
Liferay DXP executes preview generation in a separate JVM:

 dl.file.entry.preview.fork.process.enabled=true

This helps improve stability for the DXP Java Virtual Machine�

Document Library Storage
Liferay DXP’s Document Library can be configured with a variety of storage
engines including Amazon S3, database, and file system.

http://www.imagemagick.org/
http://www.imagemagick.org/script/architecture.php
http://www.imagemagick.org/script/architecture.php

16

Liferay provides 2 file system based storage facilities: FileSystemStore and
AdvancedFileSystemStore. The FileSystemStore stores files using a path structure of
${liferay.home}/document_library/<companyId>/<groupId>/<fileName>/<version>�
The AdvancedFileSystemStore stores files using a path structure of ${liferay�
home}/document_library/<companyId>/<groupId>/<fileName_with_extension>/
<fileName_without_extension>_<version>/<version>� The additional directory
hierarchy will help improve performance and scalability� Consequently, Liferay
recommends using the AdvancedFileSystemStore for production use�

dl.store.impl=com.liferay.portal.store.file.system.AdvancedFileSystemStore

It is important to note that Liferay does not handle file system backups,
replication and file locking. Liferay DXP relies upon your selected OS,
backup and file system replication tools for those facilities.

If you do not have file system replication or backup capabilities, then the DBStore
may be a better choice� DBStore stores the asset binaries into a relational database�
This allows you to use the database’s replication and backup facilities to also
backup your document assets� However, you will experience slower download
performance� This option is not recommended for Liferay DXP deployments with
large amounts of document downloads�

Liferay also provides JCR and CMIS adapters for storage� These are not
recommended for production use�

Direct Servlet Context Reload
In many production systems, we do not expect to need the servlet and JSP
containers to reload JSPs, because there will be no administrative operations that
require JSP dynamic reloading at runtime, such as:

• Manual stop / start of a module that contains a JSP file.

• Deploy a new version of an existing OSGi module�

• Deploy a new fragment to override a JSP file of an existing OSGi module.

Consequently, in production environments where we can assume that none
of the above occur, we should be able to set the following value in portal-ext�
properties:

direct.servlet.context.reload=false

17

Enabled Locales
Liferay DXP is capable of supporting many different languages. You may wish to
reduce the number of available languages in your solution� The fully supported
locales can be found in the following property:

locales.enabled=ca_ES,zh_CN,nl_NL,en_US,fi_FI,fr_FR,
de_DE,iw_IL,hu_HU,ja_JP,pt_BR,es_ES

There are also languages that currently are undergoing translation and thus
under beta support:

locales.beta=ar_SA,eu_ES,bg_BG,ca_AD,zh_TW,hr_HR,cs_CZ,da_DK,
nl_BE,en_GB,en_AU,et_EE,gl_ES,el_GR,hi_IN,in_ID,it_IT,ko_KR,
lo_LA,lt_LT,nb_NO,fa_IR,pl_PL,pt_PT,ro_RO,ru_RU,sr_RS,sr_RS_latin,
sl_SI,sk_SK,sv_SE,tr_TR,uk_UA,vi_VN

To use these locales, simply add them to locales�enabled in your portal-ext�
properties� For improved user experience for your content managers,
you may wish to reduce the locales�enabled to only those that your solution
needs to support� You can add more locales in the future by simply adding to
the locales�enabled property�

Encryption Algorithms
If you intend to use Liferay’s out of box login facilities and store user passwords in
the database, you may wish to tune the encryption algorithm used for passwords�
By default, the value is:

passwords.encryption.algorithm=PBKDF2WithHmacSHA1/160/128000

It is a Password-Based Key Derivation Function algorithm that generates a 160 bit
hash after 128000 encryption rounds (2014 OWASP recommendations).

However, in deployments less powerful CPUs (e�g�, vCPUs or older CPUs), you may
wish to use a different algorithm or reduce the number of rounds. For instance,
you can reduce the number of encryption rounds� Fewer rounds of encryption will
improve performance by reducing CPU usage� You should consult your information
security organization for proper guidance on password hashing guidelines�

18

Groups Complex SQL
Liferay DXP uses a Group object to help track certain entities that require site-
like features� For instance, organizations with sites, users with private and public
profile pages, etc. The number of groups can become quite large and complex as
the number of organizations and users grow� Liferay has implemented two ways
to optimize querying for these groups:

1� Complex SQL which will increase utilization on the database side or

2� More in-memory processing which will increase memory consumption and
CPU usage on the DXP JVM�

Option 1 is suitable when you have a large number of groups of a particular type
(e�g�, users) while option 2 will help reduce database CPU usage but increase CPU
and memory usage on the DXP JVM. Thus, there is a tradeoff decision to be made.

To configure additional types for complex SQL, you may update groups.complex.
sql�class�names in portal-ext�properties� The default only includes com�liferay�
portal�kernel�model�User� You may wish to include other available models including:

1� com.liferay.portal.kernel.model.Organization: If you have a large number
of organizations

2� com.liferay.portal.kernel.model.UserGroup: If you have a large number of
user groups

3� com.liferay.portal.kernel.model.LayoutPrototype and com.liferay.portal.
kernel.model.LayoutSetPrototype: If you are using staging with Layout
versions and/or branching

For instance:

groups.complex.sql.class.names=com.liferay.portal.kernel.
model.User,com.liferay.portal.kernel.model.UserGroup

Message Bus

WARNING: This is an advanced configuration and you should
modify sparingly� The Liferay Message Bus has been tuned to
handle most scenarios�

19

Liferay DXP leverages asynchronous messaging, via the Liferay Message Bus,
for many of its services like mail and indexing� The bus provides a loosely coupled,
pluggable architecture that helps improve user experience by performing system
tasks (e.g., email notifications) in the background.

Liferay recommends monitoring and tuning the message bus according to
your use case� You may monitor message bus statistics via the JMX Console
discussed previously�

Figure 5 - Monitoring Liferay Message Bus

In above picture, we see the statistics for the messaging destination “liferay/mail”:

• ActiveThreadCount: Displays the current number of active worker threads for
this destination�

• CurrentThreadCount: Displays the total number of worker threads�

• LargestThreadCount: Displays the maximum number of worker threads�
This is the high water mark reached when the destination was the busiest�

• MaxThreadPoolSize: Displays the maximum number of worker threads
allowed for this destination� The destination will not allocate more than this
number of threads to service requests�

• MinThreadPoolSize: Displays the minimum number of worker threads that
should be started when the destination is activated�

• PendingMessageCount: Displays the number of messages waiting for worker
threads to deliver them�

20

• SentMessageCount: Displays the total number of messages delivered via
this destination�

Portlet CSS
Liferay DXP provides you the ability to assign custom style sheets within
your portlets� You may choose to deactivate this feature, especially if you are not
planning on deploying any custom portlets in DXP� You may do so by adding the
following to portal-ext�properties:

portlet.css.enabled=false

Servlet Filters
Liferay DXP ships with a large collection of servlet filters to implement features
like compression, SharePoint support, SSO, etc� You can improve performance
by disabling those that you are not using�

You may disable the following by modifying portal�properties:

Strip Filter: Used to remove extraneous whitespaces in generated HTML�
Web servers should be used to handle this processing� To deactivate, add the
following to portal-ext�properties

 com.liferay.portal.servlet.filters.strip.StripFilter=false5

SharePoint Filter: Used to enable DXP to understand SharePoint protocols for
integration with MS Office applications. To deactivate, add the following to
portal-ext�properties

 com.liferay.portal.sharepoint.SharepointFilter=false

The following filters have been moved to OSGi modules and are disabled by default:

SSO CAS Filter: Used to implement single sign-on using CAS�

SSO NTLM Filter: Used to implement single sign-on using NTLM�

SSO OpenSSO Filter: Used to implement single sign-on using OpenSSO�

You can check the status of these filters in System Settings.

5 In place of the GZIP and Strip filters, we recommend using the PageSpeed Apache Module (). This module does require
deploying the Apache HTTP server in your Liferay architecture�

21

Session Timeout
With most web applications, the default session timeout is configured for
30 minutes� Although this may be friendly for the user, it does create added
resource consumption for the application� Liferay DXP provides several
techniques to help you reduce the session timeout for idle users while minimally
impacting usability� To reduce the lifespan of the session, you should modify the
web�xml6 and change the timeout:

<session-config>
 <session-timeout>10</session-timeout>
 </session-config>

Template Caching
Liferay utilizes Velocity and Freemarker templating engines as part of its WCM,
Theming, ADT and other features. By default, they are configured to frequently
check whether template files have been modified. These settings allows for
developers to work quickly, but the settings should be modified when going
into production�

By default, the settings designate templates to remain in cache for 60ms�
For production use, you may increase this for instance to 600000ms (10min),
3600000ms (1 hour) or -1 (indefinite).

To change the values, you may use System Settings to find settings for FreeMarker
Engine and Velocity Engine� The property to modify will be labeled as “resource
modification check interval.”

6 On Tomcat, the DXP web�xml is located in $CATALINA_HOME/webapps/ROOT/WEB-INF/web�xml

22

Figure 6 - Freemarker Engine System Settings

Figure 7 - Velocity Engine System Settings

User Session Tracker
Liferay DXP enables administrators to view the activities of the users
currently using the system� While useful for troubleshooting, this feature may
decrease performance� In general, we recommend deactivating this feature�
You may do so by adding the following to portal-ext�properties:

session.tracker.memory.enabled=false

23

Liferay Enterprise Search
In Liferay DXP, Liferay ships with an embedded Elasticsearch search engine
(i�e�, the Elasticsearch engine runs in the same JVM as Liferay DXP)� Although this
solution is great for having out-of-the-box search in Liferay, it will not officially be
supported by Liferay for production use, only for development� For production
usage, Liferay will only support use of the Elasticsearch search engine running
outside of the DXP JVM (i�e�, 1 JVM for Liferay DXP and a separate JVM for the
Elasticsearch search engine)�

Search engines benefit heavily from caching and their JVM memory profiles are
substantially different from a JVM focused on serving content and web views
(e�g�, Liferay JVM)� For these reasons, the two applications should always be kept
separate in production environments�

The following sections provide a synopsis of Elasticsearch configurations.
Prior to deployment, we strongly recommend reading Elastic’s documentation
on production deployment in Elasticsearch – the Definitive Guide�

Sizing Your Deployment
When sizing your Elasticsearch deployment, you must carefully consider your
CPU, memory, disk, and network capacity� As a general rule of thumb, you should
strive to deploy Elasticsearch on medium to large machines7 to scale effectively
while avoiding large quantities of machines� Also, you should avoid running
multiple Elasticsearch JVMs on the same operating system�

cpu
Liferay recommends at least 8 CPU cores allocated to the Elasticsearch engine�
This assumes only 1 Elasticsearch JVM running on the machine�

memory
Liferay recommends at least 16GB of memory� The preference is for 64GB
of memory�

7 Medium machines generally have at least 2-4 vCPUs� Large machines generally have at least 4-8 vCPUs�

https://www.elastic.co/guide/en/elasticsearch/guide/master/index.html

24

disk
Search engines store their indices on disk and thus disk IO capacity can greatly
impact search performance� Liferay recommends deploying Elasticsearch on
SSD when possible� If you are unable to use SSD, Liferay recommends high
performance disks (15k RPM drives)� You should also consider using RAID 0 for
both SSD and traditional hard disks�

In general, you should avoid using NAS (network attached storage) for Elasticsearch as
the network overhead can be quite large� If you are using public cloud infrastructure
like Amazon Web Services, this means you should rely upon instance local storage
and avoid network storage like Elastic Block Store (EBS)�

You must ensure you have at least 25 percent more disk capacity than the total size
of your indices� For instance, if you have 50GB of data to be indexed, you should
plan for having at least 65 GB disk space available� Index sizes will vary based on
the indexed content�

cLusTer size
Even though DXP can work with an Elasticsearch Cluster comprised of 1 or 2 nodes,
the minimum cluster size recommended by Elastic for fault tolerance is 3 nodes�

neTWorkinG
Elasticsearch relies upon clustering and sharding to deliver fast, accurate search
results� Consequently, it relies upon a fast and reliable network� Most modern data
centers provide 1GbE or 10GbE between machines� You should avoid spreading
Elasticsearch clusters across multiple data centers� Elasticsearch does not support
multi-data center deployments, especially data centers spread across large distances
(e�g�, cross continents)�

Configuring Elasticsearch
Prior to starting Elasticsearch, you must configure a few properties in your
elasticsearch�yml:

• cluster�name

 · By default Liferay DXP expects this to be “LiferayElasticsearchCluster”�

 · If you wish to configure with a different cluster name (e.g., “elasticsearch_
production”), then you must also modify Liferay DXP’s Elasticsearch
configuration in System Settings. The cluster name configured in Liferay
must match the one configured on the Elasticsearch server.

• node�name

 · Each node in your Elasticsearch cluster should be given a unique name�

25

• discovery�zen�ping�unicast�hosts

 · We strongly recommend using unicast for discovery versus multicast�
This prevents nodes accidentally joining the cluster�

 · Not every Elasticsearch node in the cluster needs to see each other at startup�
If a new node can connect to one member of the cluster at startup, then it
will automatically receive the topology information and communicate with
other nodes�

• thread_pool�bulk�queue_size

 · Liferay uses bulk requests to reduce the number of network calls between
Liferay and Elasticsearch� It is advisable to increase the queue size for the
bulk request thread pool to at least 100�

In addition to the above settings, you may choose to configure the following for
debugging purposes:

The following overhead settings are percentages
monitor.jvm.gc.overhead.debug: 40
monitor.jvm.gc.overhead.info: 70
monitor.jvm.gc.overhead.warn: 90

Tuning Your Deployment
JVm
In general, 45 percent of the available system memory should be allocated to
Elasticsearch, up to a maximum of 31GB� In general, no other JVM settings
should be adjusted within Elasticsearch. You should configure heap sizing by
setting the environment variable: ES_HEAP_SIZE�

The JVM vendor and version used for the Elasticsearch server must be identical
to the version used for Liferay DXP�

FiLe sysTem
You should configure your OS for at least 64,000 file descriptors. The default
Linux value is 1024�

Elasticsearch also uses NioFS and MMapFS� Consequently, you must ensure
there is sufficient virtual memory available for memory-mapped files.

Please consult your system administrator on how to configure these values.

26

Monitoring Your Deployment
Elasticsearch provides a monitoring tool called X-Pack Monitoring�
X-Pack Monitoring is comprised of two components:

• A server side component residing in your Elasticsearch nodes that feeds
performance data to another Elasticsearch node

• A series of Kibana dashboards to help you visualize Elasticsearch
performance information

These dashboards will help you monitor the health and performance of your
Elasticsearch cluster in order to better tune and manage your search cluster�

Figure 8 - Sample X-Pack Monitoring Dashboard

To use X-Pack Monitoring with Liferay’s Elasticsearch cluster, you must have
Liferay’s Enterprise Search subscription. For more information, please contact
your account executive�

Securing Your Deployment
In order to perform search operations, a search engine must index and store a
large quantity of data in its indices� By default, access to this data is not secured�
Unlike databases that require login for access, search engines do not require
logins to perform searches and browse its stored information�

27

Elasticsearch’s security add-on, X-Pack Security, adds over-the-wire encryption
and authenticated search engine access� Over-the-wire encryption ensures
all communications between Elasticsearch nodes are encrypted and the
communication between Liferay and the Elasticsearch servers are protected�8
Authenticated search engine access ensures all connections with Elasticsearch
require authentication, much like a database�

These security capabilities are only available with a Liferay Enterprise Search
subscription� For more information, please contact your account executive�

Summary
In the preceding sections, we outlined the steps to design a fully fault-tolerant
Liferay Digital Experience Platform deployment� The architecture described builds
a solid foundation for future growth� In addition, the Liferay Engineering team
has shared several key factors to successfully tune a Liferay DXP deployment�
Although these parameters have wide applications and have withstood many
different load testing scenarios, Liferay Engineering recommends continuously
monitoring your Liferay DXP deployment to ensure long-term performance�

Disclaimer
Liferay can only give you an initial tuning recommendation based on benchmarks
that have been performed on the out of the box product� It is up to you as system
architects and business analysts to come up with the utilization scenarios that
your system will need to service� It is your responsibility to run the appropriate
load tests on your system before production deployment, so that you can identify
significant bottlenecks due to custom applications/portlets, and other unforeseen
system and network issues, and implement appropriate configurations.

8 Liferay DXP communicates with the Elasticsearch cluster over Elasticsearch’s binary API and not over its HTTPS/JSON API.
The binary protocol provides better performance over the HTTP/JSON API�

28

Moving Forward

Liferay Connected Services
Liferay Connected Services (LCS) provides a collection of basic performance and
system monitoring tools that helps you manage and monitor your Liferay DXP
solution� For more information, visit liferay�com/liferay-connected-services�

Liferay and Dynatrace
Liferay has a partnership with Dynatrace, an industry leading application
performance management (APM) solution� With Dynatrace and the Fastpack
for Liferay, customers can gain deeper performance insight into their
Liferay DXP deployment� Learn more at liferay�com/dynatrace-apm�

Liferay Global Services
Liferay Global Services has specialists that focus on Liferay DXP Go Live and
performance tuning consultation� Learn more at liferay�com/consulting�

https://www.liferay.com/supporting-products/liferay-connected-services?utm_source=whitepaper&utm_medium=content&utm_content=dxp%20deployment%20checklist
https://www.liferay.com/dynatrace-apm?utm_source=whitepaper&utm_medium=content&utm_content=dxp%20deployment%20checklist
https://www.liferay.com/consulting?utm_source=whitepaper&utm_medium=content&utm_content=dxp%20deployment%20checklist

201116

Liferay makes software that helps companies create digital
experiences on web, mobile and connected devices. Our platform is
open source, which makes it more reliable, innovative and secure.
We try to leave a positive mark on the world through business
and technology. Hundreds of organizations in financial services,
healthcare, government, insurance, retail, manufacturing and
multiple other industries use Liferay. Visit us at liferay.com.

© 2020 Liferay, Inc. All rights reserved.

	Introduction
	Reference Architecture
	Virtualized and Cloud Deployments
	Fault Tolerance
	Performance
	Scalability
	Security

	Liferay DXP Tuning Guidelines
	Application Server Tuning
	Database Connection Pool
	Deactivate Development Settings in the JSP Engine
	Thread Pool

	Java Virtual Machine Tuning
	Garbage Collector
	Java Heap
	JVM Advanced Options
	Monitoring GC and JVM

	Liferay DXP Tuning Parameters
	Caching
	Cache Replication
	Counter Increment
	Document Library Previews
	Document Library Storage
	Direct Servlet Context Reload
	Enabled Locales
	Encryption Algorithms
	Groups Complex SQL
	Message Bus
	Portlet CSS
	Servlet Filters
	Session Timeout
	Template Caching
	User Session Tracker

	Liferay Enterprise Search
	Sizing Your Deployment
	Configuring Elasticsearch
	Tuning Your Deployment
	Monitoring Your Deployment
	Securing Your Deployment

	Summary
	Disclaimer
	Moving Forward
	Liferay Connected Services
	Liferay and Dynatrace
	Liferay Global Services

