
Liferay 7.4:
The Developer Experience
Embracing the new while 
retaining the old

Dave Nebinger



Liferay 7.4:
The Developer Experience

Embracing the New While
Retaining the Old



The Developer Experience

There are now two ways to develop for Liferay:

● Classic Developer Experience - The way we have 
developed for Liferay since 7.0 using OSGi and jars 
and wars.

● CX Developer Experience - Client Extensions (CX) are 
the new way to develop using external customizations 
and apps compatible with LXC, LXC-SM and on-prem 
solutions.

#DeveloperExperienceDAVE NEBINGER



The Classic Developer Experience

The classic ways of developing for Liferay are still 
supported:

● OSGi Module Development
● JSP Fragment Bundles
● Portlet WARs (Liferay MVC, Spring, and JSF)
● JS-based Portlets (React, Angular, Vue.js, etc)

Note that these are options for self-hosting or LXC-SM, 
but are not available for LXC. 

#DeveloperExperienceDAVE NEBINGER



PROS

Same process we’ve been 
using since 7.0, so it 
is well known.

Access to full Liferay 
API.

Easy to diagnose 
deployment issues.

CONS

May be impacted by 
Liferay API updates.

Customizations should be 
verified against new 
release.

Buggy customizations 
affect the portal.

Rework necessary for 
Liferay upgrades.

Classic Pros vs Cons

#DeveloperExperienceDAVE NEBINGER



The CX Developer Experience

Covered a lot during DEVCON:

● Objects for no-code/low-code custom data persistence.
● Client Extensions to extend Liferay without modifying 

Liferay.
● Custom fragments for custom UI building.
● JS-based applications (React, Angular, Vue.js, etc).
● Custom Docker-based custom services (i.e. Spring Boot, 

Node.js, etc).

Note that these are options for self-hosted, LXC-SM and LXC.

#DeveloperExperienceDAVE NEBINGER



PROS

Uses any technology you 
want.

Isolated from Liferay 
updates and upgrades.

Works in On-Prem, LXC-SM 
and LXC environments.

Buggy CX will not break 
Liferay functionality.

CONS

Headless and JSONWS API 
access only.

Limited ability to 
customize Liferay.

Extra monitoring and 
management.

CX Pros vs Cons

#DeveloperExperienceDAVE NEBINGER



Self-Hosted

Drop the .zip file 
into the osgi/client-
extensions folder.

Any Docker-based services 
(i.e. Spring Boot) must be 
started manually.

LXC-SM

The .zip file is added 
to the deployment image 
for LXC-SM by putting it 
in the osgi/client-
extensions folder.

LXC

Use the lcp tool to 
upload the .zip file to 
the target instance.

One Artifact, Three Deployments

#DeveloperExperienceDAVE NEBINGER



client-extension.yaml

Defines the client 
extension for Liferay.

LCP.json

Defines the client 
extension for LXC.

Dockerfile

Defines the Docker 
container to build for 
the extension.

Three Primary Files

#DeveloperExperienceDAVE NEBINGER



Source of Truth

https://github.com/liferay/liferay-portal/tree/master/workspaces/liferay-sample-workspace

#DeveloperExperienceDAVE NEBINGER

https://github.com/liferay/liferay-portal/tree/master/workspaces/liferay-sample-workspace


Liferay Docker Bases

Find the list here: https://github.com/liferay/liferay-docker/tree/master/templates

Primary containers are:

● liferay/caddy - For serving static resources like CSS, JS, etc.
● liferay/jar-runner - For serving java-based solutions like Spring Boot.
● liferay/node-runner - For serving Node.js based solutions.
● liferay/batch - For loading batch data.

#DeveloperExperienceDAVE NEBINGER

https://github.com/liferay/liferay-docker/tree/master/templates


Example Time

#DeveloperExperienceDAVE NEBINGER



Final Thoughts

● CX is very much a work in progress.

● Classic OSGi module development is still a valid path for on-prem 
and LXC-SM solutions, although preferring CX has advantages.

● Questions, Comments, Other? - Post to Ask or Liferay Community 
Slack.

● “Missing” Client Extension? - Open a support ticket or feature 
request on issues.liferay.com.

#DeveloperExperienceDAVE NEBINGER



Questions?

#DeveloperExperienceDAVE NEBINGER




